Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1260716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074096

RESUMO

Introduction: Bisphenol A (BPA) is a substance belonging to the endocrine-disrupting chemicals, globally used in the production of polycarbonate plastics. It has been found that BPA enhances carcinogenesis, triggers obesity and exerts a pathogenic effect in several disorders, such as type 2 diabetes, asthma, or increased blood pressure. Recent studies have revealed, that BPA has a harmful impact on the kidneys function, therefore, the current research aimed to explore the specific molecular changes triggered in these organs after oral BPA exposure in mice. Materials and Methods: The experiment was carried out on 12 (3-month-old) female mice. Six mice served as controls. The other 6 mice were treated with BPA in the drinking water at a dose of 50 mg/kg b. w. for 3 months. Then animals were euthanized, the kidneys were collected, and extracted RNA was used to perform RNA-seq. Results: Applied multistep bioinformatics revealed 433 differentially expressed genes (DEGs) in the BPA-treated kidneys (232 upregulated and 201 downregulated). Additionally, 95 differentially expressed long-noncoding RNAs (DELs) were revealed in BPA samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that BPA exposure resulted in profound changes in several essential processes, such as oxidative phosphorylation, mitochondrial and ribosome function, or chemical carcinogenesis. Conclusion: The obtained novel results suggest that BPA has a harmful impact on the fundamental processes of the kidney and significantly impairs its function by inducing mitochondrial dysfunction leading to oxidative stress and reactive oxygen species production.

2.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923632

RESUMO

Impaired fetal growth is one of the most important causes of prematurity, stillbirth and infant mortality. The pathogenesis of idiopathic fetal growth restriction (FGR) is poorly understood but is thought to be multifactorial and comprise a range of genetic causes. This research aimed to investigate non-coding RNAs (lncRNAs) in the placentas of male and female fetuses affected by FGR. RNA-Seq data were analyzed to detect lncRNAs, their potential target genes and circular RNAs (circRNAs); a differential analysis was also performed. The multilevel bioinformatic analysis enabled the detection of 23,137 placental lncRNAs and 4263 of them were classified as novel. In FGR-affected female fetuses' placentas (ff-FGR), among 19 transcriptionally active regions (TARs), five differentially expressed lncRNAs (DELs) and 12 differentially expressed protein-coding genes (DEGs) were identified. Within 232 differentially expressed TARs identified in male fetuses (mf-FGR), 33 encompassed novel and 176 known lncRNAs, and 52 DEGs were upregulated, while 180 revealed decreased expression. In ff-FGR ACTA2-AS1, lncRNA expression was significantly correlated with five DEGs, and in mf-FGR, 25 TARs were associated with DELs correlated with 157 unique DEGs. Backsplicing circRNA processes were detected in the range of H19 lncRNA, in both ff- and mf-FGR placentas. The performed global lncRNAs characteristics in terms of fetal sex showed dysregulation of DELs, DEGs and circRNAs that may affect fetus growth and pregnancy outcomes. In female placentas, DELs and DEGs were associated mainly with the vasculature, while in male placentas, disturbed expression predominantly affected immune processes.


Assuntos
Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Sexismo , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...